Manage and version images, audio, video, and text files in storage and organize your ML modeling process into a reproducible workflow.
Инициализация dvc репозитория
Добавление данных
Обновление данных
Добавление хранилища
dvc remote add -d --project gdrive gdrive://<url>
git add .dvc/config
git commit -m "Configure remote storage"
Отправка в хранилище
Выгрузка из хранилиища
Переключение между версиями
from dvclive import Live
with Live() as live:
live.log_param("epochs", NUM_EPOCHS)
for epoch in range(NUM_EPOCHS):
train_model(...)
metrics = evaluate_model(...)
for metric_name, value in metrics.items():
live.log_metric(metric_name, value)
live.next_step()
Pipeline
stages:
prepare: ... # stage 1 definition
train: ... # stage 2 definition
evaluate: ... # stage 3 definition
Stage
Pros
Cons